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Abstract
We present a plane-wave/pseudopotential implementation of a method to
calculate the electron transport properties of nanostructures. The conductance is
calculated via the Landauer formula within the formalism of Green’s functions.
Non-orthogonal Wannier-type atomic orbitals are obtained by sequential unitary
rotations of virtual and occupied Kohn–Sham orbitals, followed by two-step
variational localization. We use these non-orthogonal Wannier-type atomic
orbitals to partition the Kohn–Sham Hamiltonian into electrode–contact–
electrode submatrices. The electrode parts of the system are modelled by two
metal clusters with additional Lorentzian broadening of discrete energy levels.
We examined our implementation by modelling the transport properties of Na
atomic wires. Our results indicate that with the appropriate level broadening
the small cluster model for contacts reproduces odd–even oscillations of the
conductance as a function of the nanowire length.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The last decade has witnessed a remarkable miniaturization of conventional microelectronic
devices. If this trend is to continue, elements of microelectronic circuits, e.g. transistors
and contacts, will soon shrink to the size of a single molecule. One of the major goals in
nanotechnology is the construction, measurement and modelling of electronic circuits in which
molecular systems act as conducting elements [1, 2]. Accurate and reproducible measurements
of current–voltage characteristics have recently been reported for atomic wires and single
molecules [3–5]. The experimental progress has been accompanied by considerable advances
towards calculations of the transport properties of nanostructures based on density functional
theory (DFT). This activity has been largely spurred on by development of several electronic
structure codes for first-principles transport calculations [6–9].
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The prerequisite for non-equilibrium Green’s function calculation of conductance is
the partitioning of the Kohn–Sham (KS) Hamiltonian into left/right electrodes and contact
regions. Such partitioning is straightforward if one expands the KS wavefunctions as linear
combinations of atomic orbitals [6–9] but it becomes a formidable theoretical problem if the
plane waves are used for a representation of the KS orbitals. One of the aims of this paper is
the development of a theoretical scheme to partition the KS Hamiltonian within a plane-wave
basis set.

It has recently been proposed that Wannier functions can be used to link plane-wave
electronic structure and Green’s function transport calculations [10, 11]. Wannier functions
are localized in coordinate space and are obtained by a unitary transformation of the KS
orbitals. There are two disadvantages which make standard Wannier functions inapplicable
for the calculation of transport properties. First, Wannier functions are defined for occupied
KS orbitals and if the same localization scheme is used directly for the virtual orbitals it
typically leaves them as delocalized as they were before the unitary transformation. Second,
the centres of these localized Wannier functions are not controllable before minimization. To
address both issues, we have developed a localization technique which yields non-orthogonal
Wannier-type atomic orbitals (NOWAOs) from the plane-wave based KS orbitals. NOWAOs
are the maximally localized functions defined via the set of unitary transformations of occupied
and virtual KS orbitals. Our scheme is based upon the combination of two localization
techniques: Thygesen–Hansen–Jacobsen partially occupied Wannier functions [12] and
Mortensen–Parrinello non-orthogonal localization [13]. Combined, these two techniques are
used to include the virtual KS orbitals and to shift the Wannier centres from bonds to atoms.

One additional ingredient which is necessary for calculations of conductance is the Green’s
function of the electrodes. In this paper we represent the leads by two small clusters with
additional Lorentzian broadening of the energy levels.

Nanowires of metal atoms have recently attracted much attention because of their
fundamental and technological importance. In particular, sodium atomic wire has been studied
both experimentally [14–16] and theoretically [17–21]. It was found that the conductance
of Na wires exhibits even–odd oscillation as a function of the number of atoms in the wire.
The conductance for a wire with an odd number of sodium atoms is close to the quantum of
conductance G0 (2e2/h), while the conductance for a wire with an even number of sodium
atoms is less than G0. Different implementation and junction models lead to different values
of the conductance for even-numbered nanowires (0.5–0.9 G0) [17–21]. We use Na atomic
nanowire as a proving ground for our implementation and we aim to reproduce the odd–even
oscillation and values of the conductance.

We have implemented the working equations within a plane-wave/pseudopotential code
[22] and we will demonstrate the numerical accuracy of implementation for some prototypical
test examples. The remainder of the paper is organized as follows. In section 2, we describe
the details of our method to calculate the conductance of nanostructures, and its application to
sodium atomic wires is given in section 3. In section 4, we conclude the paper.

2. Method

2.1. Partitioning of the Hamiltonian

We begin with the Kohn–Sham equation for the entire nanowire junction

H |ψi〉 = Ei |ψi 〉, (1)

where H is the Kohn–Sham Hamiltonian and |ψi 〉 is the Kohn–Sham orbital. The next step
is the partitioning of the system into three parts: two electrodes and wire (typically an atomic
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Figure 1. (a) Schematic representation of an atomic/molecular scale junction system for electronic
transportation. (b) Simplified transportation model used in our method. (c) Energy levels for a
junction system containing a three-atom sodium wire. The density of states obtained by Lorentzian
broadening of the electrode levels is also shown. See text for details.

or molecular wire plus parts of the lead) as shown in figure 1. The partitioning of the system
results in the partitioning of the Hamiltonian to seven submatrices (left lead, contact, right lead
and the lead–wire interactions) and is performed by transforming the representation of the KS
Hamiltonian from KS orbitals to atomically localized basis sets:

|ψi 〉 =
∑

Uin|ωn〉, (2)

where Uin is a unitary transformation and |ωn〉 form an atomically localized complete basis set.
The unitary transformation Uin is applied to the KS Hamiltonian

H =
∑

i

|ψi 〉Ei〈ψi | =
∑

nm

|ωn〉Hnm〈ωm | (3)

with

Hnm =
∑

i

U∗
ni Ei Uim (4)

and yields the partitioning of the Hamiltonian into electrode–wire–electrode submatrices:

H =
( HL H†

WL 0
HWL HW HWR

0 H†
WR HR

)
. (5)

If the basis set |ωn〉 is not orthogonal, the analogous partitioning should be performed for the
overlap matrix S (Smn = 〈ωm |ωn〉). Matrices H and S can be defined if indices n and m
in Hnm (3) are associated with the atomic positions, but this is not the case when periodic
boundary conditions are employed and the KS orbitals are expanded in plane waves:

ψi (�r) = 1√
�cell

∑

�G
Ci �G exp(i �G�r), (6)
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where Ci �G are the expansion coefficients. The plane waves exp(i �G�r) do not have any
reference to the atomic positions and therefore the partitioning of the KS Hamiltonian
into electrode–wire–electrode subspaces cannot be performed directly within the plane-wave
representation. Several groups have attempted to overcome this difficulty by using Wannier
function representations of the KS orbitals [10, 11].

2.2. Non-orthogonal Wannier-type atomic orbitals

Wannier functions are localized functions which span the same space as the eigenstates of a
band or a group of bands. Traditional Wannier functions are obtained by transforming a Bloch
representation to a real space representation [23], in which the Bloch vector �k is substituted by
the lattice vector �R of the unit cell where the orbital is localized:

| �Rn〉 = �cell

(2π)3

∫

BZ
|ψn�k〉eiφn(�k)−i�k· �R d�k

= �cell

(2π)3

∫

BZ

∑

m

U (�k)
mn |ψm�k〉e−i�k· �R d�k (7)

where U (�k)
mn is an arbitrary unitary matrix. The integration in equation (7) is done in reciprocal

space within the whole Brillouin zone. The vector �k equals zero for disordered systems like
nanostructures or molecular wire junctions. In this case, the Wannier functions are defined via
the unitary transformation of the KS orbitals [24]

|ωn〉 =
∑

m

Umn|ψm〉. (8)

There are several different schemes for defining the unitary matrix Umn and the choice of
unitary transformation can be tailored to particular applications. Finding the maximally
localized Wannier functions is pivotal for the partitioning of the Hamiltonian. Although there
are several possible ways to define maximally localized Wannier functions, the method of
minimization of the mean square spread stands out [25, 26].

Wannier functions are traditionally constructed only from the occupied KS orbitals.
Occupied Wannier functions are located on the chemical bonds, which sometimes makes
the partitioning of junction systems difficult. The additional complication is that the sum in
equation (3) runs over all KS orbitals (occupied and virtual) and due to the completeness
requirement it is necessary to consider as many virtual KS orbitals as possible. Therefore,
to be used in transport calculations Wannier functions should be constructed in such a way
that (a) they are atomically localized and (b) they include both occupied and virtual KS
orbitals. The above two requirements are interconnected, since to get atomic centred Wannier
functions we must anyway combine unoccupied anti-bonding states with occupied bonding
states. The extraction of anti-bonding states from the entire set of virtual orbitals is a difficult
computational problem, since unoccupied anti-bonding states are mixed with some scattering
states originating from periodic boundary conditions.

Following Thygesen et al [12] we begin the localization of the KS eigenstates by
constructing a linear combination of the virtual orbitals

|φl〉 =
N−M∑

m=1

cml |ψM+m〉, (9)

where N is the number of KS orbitals and M is the number of occupied states. Partially
occupied Wannier functions are written as [12]

|φ̃n〉 =
M∑

m=1

Umn |ψm〉 +
L∑

l=1

UM+l,n |φl〉, (10)
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with L being the number of unoccupied anti-bonding states. The optimal value of L is yet to
be determined.

We minimize the following localization functional:

� =
∑

n

[〈φ̃n|r 2|φ̃n〉 − 〈φ̃n|�r |φ̃n〉2] (11)

to choose a suitable unitary transformation Umn and to obtain the maximally localized Wannier
functions [25, 26]. For the supercell of the arbitrary symmetry Silvestrelli showed [27] that the
minimization of � is equivalent to maximization of the functional:

� =
∑

n

∑

I

wI |Z I
nn|2, (12)

where matrix ZI is defined as

Z I
mn = 〈φ̃m |e−i �G I ·�r |φ̃n〉, (13)

with �G I and wI being the reciprocal lattice vectors and corresponding weights [24, 27]. For a
simple orthorhombic supercell, I ranges from 1 to 3, corresponding to x , y and z, respectively.
In practical implementation, ZI is calculated by ZI = U†ZI

0U, with ZI
0 defined as

(Z I
0 )mn = 〈ψm |e−i �G I ·�r |ψn〉. (14)

Analytical gradients of the functional � (12) are necessary to perform effective
maximization. If we write the unitary matrix at iteration i as Ui = Ui−1 exp (−A), then the
gradients of the functional � with respect to A can be approximated as

(d�/dA)i j =
∑

I

wI [Z ji(Z
∗
j j − Z∗

ii )− Z∗
i j(Zii − Z j j)]. (15)

The gradient with respect to the coefficient matrix clm is computed by the following
formula [12]:

(
d�/dc∗)

i j
=

∑

I

wI [[Z0Ũdiag(Z†)+ Z0
†Ũdiag(Z)]U†]N+i,N+ j , (16)

where diag(Z) is the diagonal part of matrix Z, and Ũ is the rotation matrix from KS orbitals to
partly occupied Wannier functions with dimension N ×(M+L). The orthonormality constraint
on matrix c is invoked through a set of Lagrange multipliers. The steepest descent method is
used to maximize �. After the maximization, the unoccupied anti-bonding states are obtained
from the coefficient matrix c through equation (9).

A final set NOWAOs is computed via the additional rotation of partially occupied Wannier
functions (10):

|ωn〉 =
M+L∑

m=1

Vmn|φ̃m〉. (17)

The rotation matrix Vnm is defined by minimizing the following function [13] independently
for each n:

�n = 〈ωn|p(�r − �Rn)|ωn〉. (18)

The weight function p(�r) is chosen in such a way that it has a minimum at r = 0 to localize
each |ωn〉 around �Rn . Following Mortensen and Parrinello [13] we select function p(�r) as

p(�r) =
∑

α=x,y,z

[
1 − cos

(
2π

L
rα

)]
. (19)
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�n can also be written in the matrix form:

�n = (V†P(n)V)nn = �v†
nP(n)�vn, (20)

where �vn is the nth column of V, and

P(n)
i j = 〈φ̃i |p(�r − �Rn)|φ̃ j〉 (21)

with |φ̃〉 being the set of partially occupied Wannier functions obtained by maximization of
�. Matrix elements P(n) are calculated only once and stored for every n. The minimum of
�n is obtained when �un is equal to the normalized eigenvector corresponding to the smallest
eigenvalue of P(n). If we need several NOWAOs for a single atomic site, the corresponding
number of smallest eigenvectors should be chosen. The number of anti-bonding states
necessary for the localization (L in equation (10)) can now be computed by the following
formula:

L = NA NLE − M, (22)

where NA is the number of atoms in the system and NLE is the number of the lowest eigenstates
included in the Mortensen–Parrinello localization. For example, for gold atoms, a typical
electrode material in molecular electronics, five d-type and one s-type NOWAOs per atom are
needed. In figure 2 we plot the generated six NOWAOs for a gold atom in a simple gold wire
junction system. We can clearly see that these six NOWAOs reflect the s and d characters of
the gold atom.

2.3. Conductance formula

The starting point for the conductance calculations is the Landauer formula [28]

G = 2e2

h
T (EF), (23)

where T is the transmission function and EF is the Fermi energy of the electrodes. Having
obtained the partitioned Hamiltonian (5), we can compute transmission as the trace of the
Green’s function G and coupling matrices ΓL/R [8]:

T (E) = Tr[ΓL(E)G(E)ΓR(E)G†(E)]. (24)

The matrices G and ΓL/R are expressed by the matrix blocks of the Hamiltonian H, overlap S,
self-energy Σ

G(E) = [ESW − HW − ΣL − ΣR]−1 (25)

and

ΓL/R(E) = i[ΣL/R − Σ†
L/R]. (26)

The self-energies ΣL/R are defined via the Green’s function of the left and right electrodes g
and the electrode–wire interactions:

ΣL/R(E) = (ESWL/R − HWL/R)gL/R(E)(ES†
WL/R − H†

WL/R). (27)

It is not possible to include the whole of the leads in the practical calculations. The interaction
between the wire and the infinitely large leads is accounted for by the self-energy. Different
theoretical models have been proposed to obtain g. The most accurate schemes rely on the
surface Green’s function method. Even with some special techniques, such as the transfer
matrix [29, 30] and decimation techniques [31], the computation of the surface Green’s function
is complex and time-consuming. Since detailed experimental geometrical structures of the
leads and nanowire are unclear in most cases, this enables us to use the simpler models for
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Figure 2. Non-orthogonal Wannier-type atomic basis functions for one gold atom in a simple gold
junction system. Only half of the junction is shown.

the leads. In this paper the electrode is represented by a metal cluster with additional energy
level broadening [32]. This model has proved to be very successful in estimation of the bulk
density of states from small cluster calculations [33, 34]. The Lorentzian broadening σ in
the electrode density of states is equivalent to positive infinitesimal σ in the electrode Green’s
function:

g = [(E + iσ)SL/R − HL/R]−1. (28)

Sai et al [35] have recently demonstrated that the static DFT calculations overestimate
the electric current and it can be corrected by adding the term ∼ ∫

dz η(∂zρ)
2/ρ4 dz to the

resistance, where η is the zero-frequency limit of the electron viscosity and ρ is the electron
density. These corrections can be readily included into our calculations, but for the examples
considered in this paper (Na wires) they can be neglected since the variations of electron
density along the wire axis are small [35]. The gradient of the density becomes substantial
for molecular wire junctions and may result in large corrections.

3. Test results

3.1. Computational methods

To illustrate the performance of our method we computed the transport properties of Na
nanowire. The calculations were performed using our implementation of the formalism
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Figure 3. Conductance of a three-atom Na atomic wire as a function of the number of Kohn–Sham
orbitals calculated to construct the NOWAOs. The Kohn–Sham orbitals are computed for a complete
electrode–wire–electrode system and the electrodes are modelled by five-atom clusters. The inset
shows the geometry of this junction system.

presented here in the CPMD package [22]. All systems were treated employing periodic
boundary conditions and the KS orbitals were expanded in plane waves (50 Ryd cut-off) at
the � point of the Brillouin zone. We used local density approximation for the exchange
and correlation functional and Stumpf, Gonze and Schettler pseudopotentials [36] for core
electrons. The system is simulated by a cluster in a large supercell. The size of the supercell is
chosen in such a way that the distance between the nearest atoms in the neighbouring cells is
larger than 8.5 Å, so that the interaction between supercell images is negligible. An extensive
set of the KS virtual orbitals is computed via Lanczos diagonalization [37] to ensure that all
possible unoccupied anti-bonding states are included. To speed up convergence of the self-
consistent iterations, a free energy functional [38] is used with the electronic temperature
T = 300 K. Since sodium is a single-valent atom, only one NOWAO per Na atom is constructed
from the KS orbitals.

The whole system is divided into three parts: left electrode, central wire and right
electrode. The electrode part is obtained by cutting a few atoms from the Na(001) surface.
In particular, as shown in the inset of figure 3, we cut a five-atom cluster, which is composed
of a square four-atom base and an apical atom. The geometry of this five-atom cluster is fixed
to the bulk values. The wire part is a single chain of Na atoms, where the distance between
the atoms is constrained to the nearest neighbour distance in the bulk system. The distance
between the electrode part and the wire part is optimized. The optimized value d is listed in
table 1 and it shows small ∼0.1–0.2 Å odd–even oscillation as the length of the wire varies.
We use the optimized value of electrode–wire separation in all our calculations.

Let us take a three-atom Na wire as an example to illustrate conductance calculations by
the method we described in the previous section.

First, the electronic structure of the whole system is calculated and a set of KS orbitals is
obtained. The number of KS orbitals should be large enough to include all unoccupied anti-
bonding states. Figure 3 shows the conductance as a function of the number of KS orbitals
included in the localization procedure to define NOWAOs. The deviation of the conductance
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Table 1. Distance between electrode and wire d (in Å), and conductance of the Na atomic wire
junction systems. The length of the Na wire N ranges from two to five atoms. The electrode part
of the junction system is modelled by one (E1 model) or five (E5 model) Na atoms. Conductances
for four different broadening parameters 0.02, 0.025, 0.03, and 0.04 Hartree are listed. See text for
more details.

E1 model E5 model

N d 0.02 0.025 0.03 0.04 d 0.02 0.025 0.03 0.04

2 3.004 0.33 0.43 0.50 0.57 3.078 0.64 0.71 0.75 0.77
3 3.070 0.99 0.99 0.98 0.97 3.270 0.99 1.00 1.00 0.99
4 3.024 0.65 0.81 0.92 1.00 3.097 0.71 0.72 0.72 0.69
5 3.042 0.99 0.99 0.99 0.99 3.221 1.00 1.00 0.98 0.96

from the correct value (1 G0) vanishes rapidly as the number of virtual KS orbitals is increased.
Our test calculations illustrate that the number of virtual KS orbitals can be adjusted to
achieve any desired level of accuracy in the conductance calculations. The results in figure 3
demonstrate that 45 virtual KS orbitals are sufficient to get the converged result for a three-atom
Na wire.

Second, this set of KS orbitals is used to construct NOWAOs, with which the Hamiltonian
matrix H and the overlap matrix S are calculated. By solving the corresponding generalized
eigenvalue problem we get a set of energy levels ε for the whole junction system, as shown in
the left column of figure 1(c). The differences between these eigenlevels and the Kohn–Sham
energies are very small, especially for occupied states. At the same time, partition of H and S
is implemented, and the energy levels of the electrodes, εL and εR, are obtained by solving the
generalized eigenvalue problem for the corresponding submatrices.

Third, we introduce Lorentzian broadening of the left and right energy levels to continuous
density of states, to compute the self-energy matrices. The broadening parameter σ is chosen
to be 0.025 Hartree here, and the effect of the broadening parameter on conductance will be
discussed later. The transmission probability is computed by using the equations in section 2.2.
The peak positions of the transmission curve can be considered as renormalized eigenlevels of
the central three-atom Na wire coupled to the electrodes (εC in figure 1).

In units of G0, the conductance equals the value of the transmission at the Fermi energy of
the leads. The Fermi energy for the electrode is not known a priori and it has to be computed
within the approach. The Fermi energy is rigorously defined as the energy at which the
integrated density of states is equal to the number of electrons in the electrode cluster [32].
The charge population of the electrode cluster is calculated by ρL/R = ∑

i∈L/R(S
1/2PS1/2)ii ,

where P is the density matrix on the NOWAOs basis set, which is obtained from the generalized
eigenvalue problem of the whole junction cluster system. We found out that if one uses very
small clusters to represent the electrodes this method of Fermi energy calculations leads to a
significant dependence of the Fermi energy on the value of the electrode level broadening.
Therefore in our calculations we set the Fermi energy of the electrodes to the position of
the Fermi energy of the complete electrode–wire–electrode system. This is justified for our
particular system since the electrodes and the wire are built from the same atoms. When the
electrode clusters are very large, the Fermi energy of the complete system becomes the same
as the Fermi energy of the electrodes computed via the integration of the density of states.

3.2. Oscillation of conductance

The most important feature of electronic current flow through Na atomic wires is that the
conductance oscillates as a function of the number of atoms in the wire. We calculate the
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Figure 4. (a) Conductance oscillation of sodium atomic wire with its length. (b) Transmission
curves of the sodium atomic wires. The Fermi energy is set to zero.

conductance of Na atomic wires with a length range from two to five atoms. The odd–even
oscillation of the conductance is well reproduced as shown in figure 4(a). The conductance
for N = 3 and 5 is one unit conductance G0, while the conductance for N = 2 and 4
is about 0.7 G0. The transmission curves for these wire systems are plotted in figure 4(b).
We can see that the number of sharp peaks in the transmission curves, i.e. the number of
resonant states, is equal to the number of atoms in the wire. The low-temperature transport
properties are mainly determined by the states near the Fermi energy. There is a resonant
state at the Fermi energy for odd-numbered Na wires, but there is no such state for even-
numbered Na wires. This is exactly the reason for the even–odd oscillation behaviour of the
conductance [18, 20].

3.3. Eigenchannels

Since there are multiple peaks in the transmission curve, it is interesting to see if sodium wires
are single channel conductors as we expected for monovalent atomic chains. By defining

t = Γ
1
2
L GRΓ

1
2
R (29)

the transmission can be written as T (E) = Tr(tt†). We can decompose the transmission to the
combination of some eigenchannels diagonalizing the matrix tt† [39]. For sodium wires, we
get only one non-zero eigenvalue at any energy, which is the manifestation of a single-channel
conduction mechanism.

3.4. Electrode cluster model

In our method the electrode is approximated by a small cluster with proper level broadening.
Therefore it is important to understand how the results of our calculations are affected by the
cluster size and by the choice of the broadening.

The size of the electrode cluster should be big enough so that charge neutrality is
maintained for the junction system. As discussed in the sections 3.1 and 3.2 the five-atom



First-principles calculations of conductance within a plane wave basis set via NOWAOs 1357

electrode model is sufficient to simulate the transport behaviour of sodium wires in our
method1. This is already a very small size in comparison with typically used models for
electrodes, but it is interesting to see if a smaller cluster still works in our method. For
this purpose we also check the simplest one-atom model. The results are listed in table 1.
Compared with the five-atom model, the oscillation strength of the optimized distance between
the electrode and wire is smaller. We can see that the conductance for the one-atom model
still exhibits the even–odd oscillation, but the conductance of even-numbered wires is not
very stable anymore. This result indicates that the one-atom electrode model provides an
oversimplified description of the system.

It is also important to test whether the broadening parameter strongly affects the results
of the transport calculations. We analysed the conductances for all wires by varying the
broadening parameter σ from from 0.02 to 0.04 Hartree, and list the results in table 1. We
find that for the large electrode model the conductance is not very sensitive to the variations
of σ , especially for an odd-numbered wire system. For the one-atom electrode model, the
conductance changes significantly as σ varies. This is because there is only one electrode
energy level for the one-atom model, and the shape of the density of states at EF strongly
depends on the broadening parameter.

There is another method for calculating the conductance for a single-channel
nanowire [18, 40]. It is based on the Friedel sum rule and also relies on the eigenlevel
broadening technique to represent the continuum of states in the contact. In that method, the
eigenvalues of the whole junction system ε are broadened to obtain the density of states, thus
the broadening parameter should be smaller than the resonance spacing but larger than the
single particle level spacing for the electrode. To satisfy this constraint, the spacing of εL and
εR should be much smaller than that of εC, and therefore much larger electrode clusters should
be used in calculations based on the Friedel sum rule. In our method, however, if the broadening
parameter is comparable to the resonance spacing we still get very accurate results. Therefore,
much smaller metal clusters can be used to model electrodes within our implementation.

4. Conclusions

We have developed and implemented a plane-wave based method to calculate the conductance
of nanostructures. The fundamental quantities in the present implementation are NOWAOs
which are obtained by the multistep localization of KS orbitals. NOWAOs are used to
partition KS Hamiltonian to electrode–wire–electrode submatrices that is a necessary step
for the Green’s function based conductance calculations. The electrode parts are modelled
by small clusters with proper broadening of their eigenlevels, and this model is especially
suitable for systems for which we have a very limited knowledge of the lead–wire bonding
structure. Transport properties of sodium nanowires are studied by this method and the odd–
even oscillations of the conductance are reproduced.
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